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J .  Phys. A: Math. Gen. 17 (1984) 1593-1602. Printed in Great Britain 

On Thomas-Fermi-von Weizsacker and Hartree energies 
as functions of the degree of ionisation 

B Baumgartner 
Institut fur Theoretische Physik, Universitat Wien, A1090 Wien, Boltzmanngasse 5 ,  Austria 

Received 22 November 1983, in final form 23  January 1984 

Abstract. The properties of Thomas-Fermi-von Weizsacker energies as functions of the 
degree of ionisation are  studied. A concavity result is established, which can be interpreted 
as a bound to the decrease of the ionisation energies. A numerical calculation of Hartree 
energies is described and the critical ionisation is numerically calculated as 1.21. 

1. Introduction and summary 

In Thomas-Fermi-von Weizsacker (ww) theory, the energy of an electron density (T 

in an external potential U(x)  is given by the TFW functional 

accounts for the mutual repulsion of electrons. U(x)  is the potential generated by 
the nucleus, or by a collection of nuclei. The first term is the kinetic energy as in 
quantum theory for a single electron density, the second term is the kinetic energy as 
in Thomas-Fermi (TF) theory for a many electron density. There, p is usually chosen 
as g. A and B are positive constants. The boundary cases B = 0 or A = 0 correspond 
to the simple Hartree equation (as is used for the Helium atom), or to TF theory, 
respectively. They can be derived as Z + a3 limits of the quantum theory for bosonic 
or fermionic atoms (Benguria and Lieb 1983, Lieb and Simon 1977, Baumgartner 
1976). In this context, it has turned out that the Hartree equation is important for 
the question of the existence of very negative ions. The mathematics of this paper 
covers the case B = 0, but we have to demand strict positivity of A. 

For an atom with nuclear charge Z and N electrons one has U(x) = -Z/lxl and 
I I ( T ( ( ~  = j  lu(x)l d3x = N, but by extracting a factor 2' from all energies, (8,,+ 
Z2gmW) this case is described by the functional with V(x)  = -l/I.x and with J J ( T ( J ~  = 
N / Z .  We denote this ratio, which measures the degree of ionisation, by t and study 
the function 
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E ( t )  is the renormalised total energy (renormalised by the factor Z 3  in case of the 
Hartree theory, by Z7’3 in case of the TF theory). 

We also study 

e ( t )  = t - ’E ( t ) ,  (4) 

which is the renormalised energy per electron (renormalised by 2’ in Hartree theory, 
by Z4’3 in TF theory). 

The question of the existence of TFW theory and some properties of E ( ! )  have 
been extensively studied (Benguria 1981, Benguria et a1 1981, Lieb 1981). In this 
paper we derive some properties of e ( t )  and other energy terms which seem to be 
new. The new results appear in theorem 2, (i) and (vi) through (x), and in theorem 
5(i), (ii), (iv). In particular we show concavity of e(?),  which can be interpreted as a 
bound to the decrease of the ionisation energies. We also derive some of the old 
results in a new way. Finally we describe a numerical calculation of the Hartree 
energies, where we find t,, the critical value of t, as t,= 1.21. 

2. Definition of functionals 

We begin by making precise the assumptions on the various terms of the functional. 
The external potential V ( x )  is assumed to be relative compact with respect to the 
quantum kinetic energy operator -A,  when regarded as an operator in 2”. This is 
true in particular for any electrostatic potential generated by a charge density with 
finite total charge. (See standard textbooks on mathematical physics, e.g. Reed and 
Simon (1979).) 

As to the exponent p ,  we demand 1 < p G  2. (The case p =  1 leads to a trivial 
modification of the Hartree equation.) In case B > 0, we require U E TP. In any case, 
(T has to be an element of 2’ and of the Hilbert space Xc, which arises as the completion 
of CT in the 1 1 .  llc-norm. This norm is diagonalised by the Fourier transform U -+ 6: 

I I C T I / ~  = i jc?(k)l’k-’ d3k. ( 5 )  

Xc is thus the space of distributions the Fourier transforms of which are elements of 
T2(R3, k-’ d3k). It contains not only functions, but, for example, also surface charge 
distributions. 

We represent two of the terms in gmW by means of their Legendre conjugates. 
The following representation of the electrostatic repulsion has, in the context of the 
Hartree equation, first been used by Bazley and Seydel (1974): 

(., .)c denotes the inner product in The supremum is obviously obtained at a 
unique p, namely at p = U. The analogous representation of the TF kinetic energy is 
the following: 

Let q be such that l / p +  l / q  = 1, then 

Again the supremum is obtained at a unique U, namely at U = vP-’ 
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The remaining terms in GpWw are quadratic in U’”, which is an element of 2”. 
We treat them as expectation values of operators in 2’ and make the following 
definitions. 

Let 
h o = - A +  U, (8) 

for p E 2 fc  and U E L f q  set 

V,(x) = 5 Ix-yl-’p(y) d3y, 

h , ,  = ho + v, + Bu. 

Let, moreover, 

9 = {+ E 2’: \+ I2  E 2 fc  fl Yep, + E  form domain of ho}, 

then we define, for 4 E 9, p E Xc, U E Yq, t > 0, the functionals 

&+, p, U )  =(+, ~,,”+)-~4-’Il~lI::-411~112c, 

Gp(r, p, U )  = inf spec h , ,  - t-’(Bq-’Ilu)1,9 +ill pll:). 

The validity of these definitions is guaranteed by the assumptions on U and the following 

Lemma 1 .  V, and U are relative compact perturbations of ho and 9 is a core for hp,v 

Proof. In terms of V, the C-norm of p equals (I IV Vp1’)’’’. By Sobolev’s inequality, 
V,E 3‘. Thus both V, and U are in Lf’+(P),. By the Hardy-Littlewood-Sobolev 
inequality Y6’5 c Xc, thus 9 = Y p  f l  Y12’5. The rest of the proof is standard (see Reed 
and Simon (1979), especially example 6 in XI11 4). 

Remark. It follows that the essential spectrum of h , ,  is [O,CO) and that there exists 
a unique non-negative ground state wavefunction whenever h,,, is not positive. 

The various functionals are related by 

8TFw(u) =sup @(U1”, p, U). 
P. 

It is known that the infimum of 
(1981). Thus 

g ( 4 ,  p, U) is actually attained at a unique 4 Lieb 

E ( ? )  = inf sup @(+, p, U). 
d € 9 ,  ,,U 

We will eventually show that inf and sup may be exchanged. This implies 

E ( 0  = S U P  t8(r, P, 4, 
P. 0 

and 
e( t )  = sup 8( t, p, U). 

0% U 
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In the sequel we will take ( 1 7 )  and ( 1 8 )  as the definitions of E ( t )  and e ( t ) .  The 
equivalence to (3) ,  (4) and (16)  is shown in 8 3 after theorem 4. 

3. The functional S(t, p, U) 

Lemma 2. S( t ,  p, U )  is jointly concave in ( f ,  p, U )  and jointly weakly upper semicon- 
tinuous (wusc), (in the product of the standard topology on R,, and the weak topologies 
on Xc and Y 9 ) .  It is strictly concave in ( p ,  U). 

Proof, hP," is affine in p and U .  inf spec h , ,  = inf4Ea, (4 ,  hp, ,4) ,  and this infimum of 
weakly continuous affine functions is wusc and concave. For s E R, t-'ls/' is jointly 
convex in ( r ,  s). (It is here that the condition p S 2  enters.) Thus for U E %'", the 
functionals f x ( f ,  U )  = t-'lv(x)1' are jointly convex in ( 2 ,  U ) ,  and so is j f x ( f ,  U )  d3x = 
t- ' j /  ~ 1 1 , " .  By continuity of the norm, the desired convexity holds on R, x 9'. The same 
argument applies to t - ' l /p / l  g. As norm continuous concave functions, -t-'I/ 1 1 1 1 ;  and 
- f C 1  I (p/ I  $ are WUSC. The strict concavity in ( p ,  U )  holds by virtue of the strict convexity 
of IIUll; and IIPll'c. 

Theorem 1 .  For each t > 0, there exist unique pf and U ,  such that e ( t )  = S(t ,  p,, U,). 

Proof, Since inf spec h , ,  S 0 (remark after lemma l ) ,  we have the bound tS( t, p, U )  S 

- J/p / /  $ / 2  - Bq-' I /  U 11;. Let EH = 8( t ,  0,O) (the ground state energy of the hydrogen 
atom). In searching for the supremum of 8 at a fixed t we may restrict the domain 
of 8 to the weakly compact sets / Ip / l 'c  S 2tlEHI and /lull; s B-' t /EH/.  Now the theorem 
follows with lemma 2. (For standard results on convex and concave functions and 
functionals see e.g. Blanchard and Bruning (1982) ,  Rockafellar (1970) . )  Here we use 
theorem 1.2 of Blanchard and Bruning (1982) . )  

Definitions. 
(a) h ( t )  = h , ,  at p = pr, U =  ut 
(b) p (  t )  = inf spec h( t )  

(d) r ( t )  = t - 'R(t)  
(e) & = e - r t  
( f )  t,=inf{t: p ( t ) = O } , p C = p c ,  u C = v c  
(g) df is the unique normalised non-negative ground state wavefunction of h, (for 

(c) R ( t )  = / I P f I I ~ / 2 + ~ q - ' I l ~ f / I ~  

t < t c ) .  

Remarks. 
(i) Anticipating the validity of the TFW equation (theorem 3) ,  one has 

E = (4*, ho4,)+ t -93(2-p)p- l  J I ~ ~ ( X ) I ~ P  d3X. 

(ii) The energies are related by 

e = p - t r  E = p t - R  E = 2e - p. 
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(iii) Since p ( t,) = 0 (see theorem 2 ) ,  the pair ( p,, U , )  may be characterised by 

l l~,ll $/2 + &-‘I( u,ll; = inf{ IIP II $ / 2  + W’ 11 011;: h , ,  3 0). 
P ?  U 

(iv) That t ,  > 0, so that the content of this paper is non-void, can be deduced from 
) ) p I ) J C  + 0, 1) u , ) ) ~  9 0 ,  as t+0 .  The interesting point about t ,  is that it is actually strictly 
larger than one in certain important cases (Lieb 1981). 
We gather everything we can deduce about the ?-dependence of energies and functions 
in the following big theorem. While the method of proof seems to be new, not all the 
results are new. ((ii) to (v) can be found in Lieb (1981).) 

Theorem 2. 
(i) e( t )  is non-positive, non-decreasing and concave, 
(ii) E ( ? )  is non-increasing and convex, 
(iii) For t a t c o n e  has p ( f ) = O ,  E ( t ) = E ( t , ) ,  p I = p c ,  u t = u , ,  
(iv) E ( ? )  and e ( ? )  are continuously differentiable, 
(v) E ’ ( f )  = dE( t ) /d t  = p ( t ) ,  p ( f )  is continuous, non-positive and non-decreasing, 
(vi) e’( t )  = r( t ) ,  r(  t )  is continuous and non-increasing, 
(vii) R is increasing in f.  As a function of F it is the Legendre conjugate of E (? ) ,  

(viii) E is increasing in t. As a function of -1 it is the Legendre conjugate of - e ( f ) ,  

(ix) The derivative of p ( t )  (in the distributional sense) is bounded: p f ( f )  = E”(?)  s 

(x) The mapping t + p, is norm continuous, t + U, is weakly continuous. 

non-decreasing and convex in p, 

non-increasing and convex in r. 

2 r ( t ) .  

Proof. (i) and (ii) follow from the respective monotonicity and convexity properties 
of the functionals 8 and t8. We have the fact that the supremum over y of a function 
f ( x ,  y)  which is jointly concave in (x, y) is concave in x. 

(iii) Suppose t > s and p(s)  = 0. Then E ( ? )  2 8(f, p,, U , )  = E (  s). By continuity of 
the convex function E(? ) ,  also E(?,) = E ( s ) .  p(t,) = 0 follows from (v). By uniqueness 
of the minimising p and U ,  and since kZ( t, pI, U , )  does not depend on t for r 3 t,, it 
follows that p, = pc and U ,  = U,. 

(iv) Since e ( ? )  is concave, the right and left derivatives, e, and el, exist and satisfy 
e , (? )  G e , (? ) .  % is obviously differentiable in t. 

Let s < t < U. By definition of e:  

e ( u )  - e ( ? )  3 ‘%(U, PI,  U,> - a(?, PI, U , )  

e ( ? )  - 4 s )  % ( t ,  P,, 0, )  - $(s, P[, 0,). 

and 

Thus 

e,( t )  2 ala?% z e , (? ) .  

It follows that e ’ ( ? )  exists and is equal to the partial derivative of $. 
(v), (vi), hold, since r ( t ) = ( a / a f ) G P ( t , p ,  U , )  and E ’ ( t ) = e ( t ) - t r ( t ) = p ( t ) .  
(vii) R = t E ’ ( t ) - E ( t ) = s ~ p , , ~ ( s p - E ( s ) )  at p =E‘(?). 

dR/dt  = ?E”(?)  Z 0. 
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(viii) is analogous to (vii): E =sup,3o ( - s r+  e ( s ) ) .  
(ix) By the increase of E in t ,  O c ( 2 e - p ) ’ = 2 r ( t ) - E E ’ ( r ) .  
(x) Fix any s L 0. We have seen in the proof of theorem 1 that for t S 2 s  the pr 

and U, lie in certain weakly compact sets. There exist weak accumulation points 6, 
and c,, when t + s, but since 8 is wusc, 8(s, bs, 6,) 3 limr+s e ( t )  = e( s), so c, = p, and 
CS = U, by the uniqueness property. Since each term in 8 is separately wusc, but e ( t )  
is continuous, the norms IIprllc and I I u , ~ ~ ~  are continuous functions of t. In a Hilbert 
space, a weakly continuous curve with continuous norm is norm continuous. 

Remarks. 
(i) The increase of e ( t )  follows also from the convexity of E ( t )  and form E ( 0 )  = 0. 
(ii) The convexity of E ( t )  mimics the unproven conjectured monotonicity of the 

ionisation energy for finite quantum Coulomb systems (Simon 1984). Interpreting the 
concavity of e ( t )  in a similar way, it would mean a bound in the opposite direction, 
saying that the ionisation energies cannot decrease too fast. Part (ix) is the explicit 
statement of this bound. 

(iii) The increase of E in t is analogous to a certain monotonicity theorem in 
perturbation theory, for B = 0 or p = 2. In the case of the Hartree equation it can be 
considered as the limiting form of this perturbation theoretic result. 

Proof. Equations ( a )  and (c) are just the definitions of p ( f )  and 4p Differentiating 
&(t ,  pt+hp,  u , + p u )  with respect to A and p and using a theorem from analytic 
perturbation theory (the Feynman Hellman theorem) (Read and Simon 1979), yields 
(b)). (We remark that p = C$*E 2, implies p ( n )  = 4 2 ( x )  almost everywhere.) 

A uniqueness theorem for positive solutions of the TFW equation (Reeken 1970, 
Lieb 1981), shows that our solutions also minimise the TFW functional (1). This is 
also affirmed by the following theorem. 

Theorem 4. 

min max @(4,  p, U )  =max min 2(+, p, U )  
4 E 9 ,  P,t‘ P I U  4 € Z r  

for t < t,. 

Proof The domain of @ may on both sides be restricted to positive functions. We 
may, therefore, consider $?(a1’2, p, U), for a z o ,  C E  2 ’ n  T P f l  X,-, 1 1 ~ 1 1 ~  = t ,  which is 
a convex set. This functional is convex in a (Lieb 1981) and concave in ( p ,  U). Thus 
the triple (ar = 4;,  p,, U,) is a saddle point and the interchange of min and max is 
allowed (Rockafellar 1970). 

Remark. It is not difficult to establish weak lower semicontinuity of @ in 4 and thus 
extend this theorem to tat,. But we have proven just enough to guarantee the 
equivalence of the two formulae (16) and (17) for E ( t ) .  For E ( t )  has the property 
that E ( t )  = limsIrc E ( s )  for t 2 t, by (ii) and (iii) of theorem 2. But the right-hand side 
of (16) has the same property (theorem 7.8 of Lieb (1981)). 
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Theorem 5. (The virial theorem and related results). 
Suppose U(x) = -Z/lxJ. Let 

K = A  IVu,’/’(x)1’ d3x, R = B p - l ~ ~ u l ~ ~ ;  

A = - Z  u ~ ( x ) / I x I  d3x, R = Ila,lI2C/2. 

I 
I 

Then the following relations hold: 
(i) 2K + 3( p -  l ) K  + A + R  = 0 
(ii) K + ( 3 p - 4 ) K + E = O  
(iii) pt = K + p K  + A  + 2 R  
(iv) if B=O and t = t , ,  then - E : K : R : - A = 1 : 1 : 1 : 3 .  

Proof. 

(d/dA)i9mw(uf,A)A=o = 0 gives the equation. 
(i) follows from the usual scaling argument: consider u, ,~  = A 3 a , ( A x ) .  

(ii) follows from (i) and from E = K + E  + A  + R .  
(iii) is the equation pt = E + R. 
(iv) follows from (i) and (iii). 

4. Numerical evaluation of Hartree energies 

Here B = 0 and with the help of a suitable scale transformation (x + Ax), we can set 
A = 1. Since the solution we are looking for is spherically symmetric, we can get 

x , ( r )  = 27””t1’’rq5,(x) at r = 1x1. (22) 
The 2’-norms of x and f1/’q5 are equal: 

lo* ~ ~ ( r ) ~  dr  = t. 

The Hartree equation for xf is 
(-d’/dr‘ - rF1 + V,(r) - p ( f ) ) x ,  = 0 

Vf(lxl) = f I X - - Y I - ~ ~ ~ ~ ( Y )  d3y. 

with 

With the help of Gauss’ law this can be transformed to 

( r - l -  s - ‘ ) x : ( s )  ds. 

The Hartree equation is thus written as the following integro-diff erential equation: 

( -d’/ dr2 - r - l -  I (  r )  + rFIJ( r )  - 7 ) x  = 0 

I ( r )  = s-’x’(s)  ds (26b, c )  I: 
7 = p - V(0). 
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In this form it can be treated in much the same way as the ordinary Schrodinger 
equation. One starts to integrate from r = 0. There x = 0, but one has to choose 7 
and ~ ’ ( 0 ) .  In the generic case X ( r )  will soon go through zero or start to diverge 
( X ’ ( r )  > 0 and X ” ( r )  > 0). To find a better X ( r ) ,  one chooses a larger ~ ’ ( 0 )  in the first 
case, a smaller one in the second case. If 71 is in the appropriate range (between -0.25 
and approximately -0 .373) ,  one will in this way approximate an exponentially decreas- 
ing positive solution X (  r ) .  The physically interesting parameters are now determined 
by 

t = J(a) ,  V ( 0 )  = I(a)7 Pu(t) = 7 + l ( a ) .  ( 2 7 ~ ~  b, c )  

All the other energies require additional integration. We have chosen to calculate 

and use E = -K, e = E / t 7  E = 2 e - p ,  R = K + tp, r = R / t 2 .  
Starting with a different value of 7 yields a different value of t. The boundary 

cases 7 = -0.25 and 7) - -0.373 correspond to the hydrogen atom ( t  = 0, p = e = E = 7) 
and to the critical solution with t , -  1.21 and p(t,) = 0. 

0 0 5  1 0  

Figure 1. E and ,u as functions of r. 
t 

-0  25 -0 05 
CI 

Figure 2. R as a function of ,u. 

0 

0 0.5 1.0 
t 

i 

0 0.5 1.0 
t 

Figure 4. e as a function of t Figure 3. R as a function of t. 
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. . . .  . . . . . . _  
0 0 5  1 .o 

t 

Figure 5. r as a function of t. 

- 0 . 2  1 

Figure 6. E as a function of t .  Figure 7. E as a function of r. 

Choosing 77 > -0.25 yields nothing other than oscillating solutions. For 7 < -0.373 
the algorithm described above leads to a ,y which goes first through a maximum as 
any other solution, then it falls off until it reaches a point r l ,  where X'(r l )  = X " ( r l )  = 0. 
There it does not start to diverge, rather it falls off again until it reaches zero at r2. 
In this way one gets a solution for a finite volume, with Dirichlet boundary conditions 
if one stops at r2,  with Neumann boundary conditions if one stops at r l .  In both cases 
t >  t,  and p( t )>  0 is a seemingly smooth continuation of the function p( t ) .  The zero 
of this extended p ( t )  determines the critical value t,. 

References 

Baumgartner B 1976 Commun. Math. Phys. 47 215-9 
Bazley N and Seydel R 1974 Chem. Phys. Lett. 24 128-32 
Benguria R 1981 PhD thesis, Princeton University 
Benguria R,  Brezis H, Lieb E H 1981 Commun. Math. Phys. 79 167-80 
Benguria R and Lieb E H 1983 Phys. Rev. Lett. 50 1771-4 
Blanchard P and Bruning E 1982 Direkte Methoden der Variationsrechnung (New York: Springer) 
Lieb E H 1981 Rev. Mod. Phys. 53 603-41 
Lieb E H and Simon B 1977 Adu. Math. 23 22-116 
Reed M and Simon B 1979 Methods of Modern Mathematical Physics, vols I-IV (New York: Academic) 
Reeken M 1970 J. Math. Phys. 11 2505-12 
Rockafellar R T 1970 Convex Analysis (Princeton, NJ: PUP) 
Simon B 1984 in volume commemorating the 40th anniversary of the Mathematics Research Institute at 

Oberwolfach 


